Updates on Modeling Efforts of Nueces BBASC Technical Consultant

Presentation to Nueces BBASC Sam Vaugh, PE Cory Shockley, PE – HDR Engineering April 25, 2012

Discussion

- Instream Flow
 - Planned Water Supply Project Evaluations
 - Sabinal Recharge Dam
 - Standard and Strategy Evaluation
 - Nueces River @ Laguna
 - Nueces River @ Cotulla
- Nueces Bay & Delta
 - Planned Water Supply Project Evaluations
 - Lake Corpus Christi Off Channel Reservoir
 - B&E Scenario Evaluation

Focal Sites for BBASC Instream Flow Standard Recommendations

Planned Water Supply Projects

- Lower Sabinal Recharge Project
- Potential Environmental Flow Standards
 - No E-Flow Restrictions
 - Lyons (TCEQ)
 - CCEFN (Regional Water Planning)
 - Full BBEST

Lower Sabinal Recharge Project

- Recommended Region L Plan
- Capacity 8,750 acft
- Enhanced Recharge
 - The additional recharge that would occur across the entire Edwards aquifer recharge zone on the Sabinal River from the implementation of the Sabinal Recharge Dam.

Sabinal River near Sabinal

Subsistence

Sabinal River at Sabinal Recharge Reservoir - Enhanced Recharge

Sabinal Recharge Dam

- Preliminary Conclusions
 - The impoundment of high flow pulses by the Sabinal Dam provides the greatest opportunity for recharge enhancement.
 - Variations in base flow criteria have negligible effects on enhanced recharge.
- Downstream Impacts
 - System yield = -1,900 to -2,300 acft/yr
 - Average Annual Bay Inflow = -850 acft/yr

Standard & Strategy Evaluation

- Laguna ROTR with OCR
- Cotulla Reservoir
- Cotulla ROTR with OCR
- Evaluate:
 - No Recommendation
 - BBEST Recommendation
 - Modifications to BBEST Recommendation
- Results:
 - Yield
 - Streamflows

Laguna ROTR - OCR

- Environmental Flow Standards
 - None
 - Full BBEST
 - Modified BBEST
 - No Overbank Flow Criteria
 - No Overbank with Pulse Exemption
 - No Overbank with Pulse Exemption and Dry Base Flows
 - No Overbank with Pulse Exemption and 50% Rule with Avg. Base Flows

E-Flow Criteria Definitions

- Overbank Exemption
- Pulse Exemption Rule
 - If the diversion rate of a run-of-river or off-channel reservoir diversion is less than 20% of the flow pulse trigger, then the pulse can be omitted from the E-flow criteria.
 - The 20% rule is not applicable to on-channel reservoirs
- Single Tier of Base Flows
- Single Tier of Base Flows with 50% Rule
 - Diversions may not exceed 50% of the difference between the base flow and the subsistence flow.

Nueces River @ Laguna - BBEST

Flow Levels

Medium (50th %ile)

Low (25th %ile)

Subsistence

Pulse volumes are in units of acre-feet and durations are in days. Period of Record used: 1/1/1924 to 12/31/2009.

Nueces River @ Laguna - BBEST

Nueces River @ Laguna Hypothetical Project

- Run of the River Diversion (400 cfs)
- Off Channel Reservoir (44,000 acft)

Nueces River at Laguna OCR - Firm Yield

Defined – Modified BBEST

- Overbank Exemption
- Pulse Exemption Rule
 - diversion rate < 20% of the flow pulse trigger
 - 20% rule not applicable to on-channel reservoirs
- Single Tier of Base Flows with 50% Rule
 - Diversions may not exceed 50% of the difference between the base flow and the subsistence flow.

Nueces River @ Cotulla Hypothetical Projects

- Cotulla Reservoir On Channel
 - Capacity = 527,000 acft
- Cotulla ROTR Off Channel
 - Diversion = 400 cfs
 - Capacity = 40,000 acft

Nueces River @ Cotulla - BBEST

Overbank Events	Qp: 15,100 cfs with Average Frequency 1 per 5 years Regressed Volume is 151,000 Duration Bound is 42										
	Qp: 8,410 cfs with Average Frequency 1 per 2 years Regressed Volume is 80,700 Duration Bound is 38										
	Qp: 4,460 cfs with Average Frequency 1 per year Regressed Volume is 41,100 Duration Bound is 34										
	Qp: 1,560 cfs with Average Frequency 2 per year Volume Bound is 24,200 Duration Bound is 28										
High Flow Pulses	Qp: 96 cfs with Average Frequency 1 per season Volume Bound is 1,570 Duration Bound is 20				Qp: 1,180 cfs with Average Frequency 1 per season Volume Bound is 17,200 Duration Bound is 24			Qp: 100 cfs with Average Frequency 1 per season Volume Bound is 1,030 Duration Bound is 16 Qp: 640 cfs Average Frequency 1 per seas Volume Bound 8,610 Duration Bound		requency 1 season Bound is 610	
	Qp: 8 cfs with Average Frequency 2 per season Volume Bound is 100 Duration Bound is 13				Qp: 190 cfs with Average Frequency 2 per season Volume Bound is 2,370 Duration Bound is 17			Qp: 35 cfs wi Average Frequen per season Volume Bound is Duration Bound :		requency 2 season und is 360	
					Frequer Volum	ofs with Avacy 3 per s e Bound is on Bound i	eason 150				
Base Flows (cfs)	38				31			_		42	
	6				10 1			7		15	
Subsistence Flows (cfs)						1					
	Nov De	ec Jan Winter	Feb	Mar	Apr	May Spring	Jun	Jul Sumn	Aug	Sep	Oct
	High (75th %ile) Flow Levels Medium (50th %ile) Low (25th %ile) Subsistence				Pulse volumes are in units of acre-feet and durations are in days. Period of Record used : $1/1/1927$ to $12/31/2009$.						

Cotulla Reservoir

- Flow Criteria Scenarios
 - None
 - Full BBEST
 - Modified BBEST
 - No Overbank Flow Criteria
 - No Overbank with 50% Rule and Avg. Base Flows
 - No Overbank with Dry Base Flows

Cotulla Reservoir - Annual Flow Frequency Curve

Cotulla Reservoir - Firm Yield

Cotulla Reservoir - Annual Flow Frequency Curve

Cotulla ROTR OCR

- Flow Criteria Scenarios
 - None
 - Full BBEST
 - Modified BBEST
 - No Overbank Flow Criteria
 - Pulse Exemption Did Not Qualify
 - No Overbank with 50% Rule and Avg. Base Flows
 - No Overbank with Dry Base Flows

Cotulla Off-Channel Reservoir - Firm Yield

Cotulla Off-Channel Reservoir - Annual Flow Frequency Curve

Cotulla Off-Channel Reservoir - Firm Yield

Cotulla Off-Channel Reservoir - Annual Flow Frequency Curve

Path Forward

- Proposal for BBASC Instream Environmental Flow Standard Recommendation
 - Modified BBEST
 - Overbank Exemption
 - Pulse Exemption Rule
 - Average Base Flow with 50% Rule
 - BBEST
 - Alternative BBEST modification
- Continue Technical Analysis
 - Coordinate with BBEST to evaluate ecological effects of the Instream Recommendations

Corpus Christi Water Supply Model

- Period of Record 70 years (1934 2003)
- Monthly Model
- Change Demand on System
- Change B&E Operations
- Results
 - Bay Inflow
 - Reservoir Storage
 - System Yield

Order Compared to BBEST

2001 TCEQ Agreed Order

Sys Stor. %	Jan (acft)	Feb (acft)	Mar (acft)	Apr (acft)	May (acft)	Jun (acft)	Jul (acft)	Aug (acft)	Sep (acft)	Oct (acft)	Nov (acft)	Dec (acft)	Ann. (acft)
>70	2,500	2,500	3,500	3,500	25,500	25,500	6,500	6,500	28,500	20,000	9,000	4,500	138,000
70-40	2,500	2,500	3,500	3,500	23,500	23,000	4,500	5,000	11,500	9,000	4,000	4,500	97,000
40-30	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	14,400
>30	0	0	0	0	0	0	0	0	0	0	0	0	0

2011 BBEST Recommendation

Condition (Target Salinity)	Nueces Bay Fro	eshwater Inflow Regime (Recommendations			
	One overbanking event per y	vear of 39,000 acft; maximu	Annual Total (acft)	Attainment		
High (10)	125,000 acft (20%)	250,000 acft (25%)	375,000 (20%)	750,000	25%	
Base (18)	22,000 acft (60%)	88,000 acft (60%)	56,000 (75%)	166,000	80%	
Subsistence (34)	5,000 acft (95%)	10,000 acft (95%)	15,000 acft (95%)	30,000	95%	
	Winter = Nov - Feb	Spring = Mar - Jun	Summer/Fall = Jul - Oct		41	

Planned Water Supply Projects

- Lake Corpus Christi Off Channel Reservoir (LCC OCR)
- 280,000 acft capacity
- Divert flood flows and top foot of LCC
- Refill LCC trigger at 80 ft-msl.
- Maximum 1,250 cfs diversion rate
- Modeled with
 - Existing TCEQ Agreed Order
 - BBEST Recommendation (Operational)

CCWSM Scenarios and B&E Analysis

- Modeled Safe Yield Scenarios (75K Min Stor)
 - No Pass-Throughs
 - Base Safe Yield Order
 - Full BBEST
 - Seasonal Order
 - Spring Only Targets BBEST
 - Full BBEST
 - 88,000 **-** 40%
 - 88,000 50[%]
 - No Pass-Throughs 40%
 - 3,000 All Months

CCR/LCC/LT System Safe Yield - Average Annual Bay Inflow - Average Annual B&E Release

Path Forward / Questions?

- Continue Technical Analysis
 - Refine B&E Analysis
 - Provide Flows for TxBLEND Analysis
- Report Compilation

Sabinal Yield Plot with modified BBEST

Sabinal Yield Plot with Streamflows

Agreed Order Compared to BBEST Recommendation

2001 TCEQ Agreed Order

- Operational
- Monthly
- 4 Defined Storage Zones
- Based on System Storage
- Below 30% No Passes
- Salinity & "Spill Banking" Relief

BBEST Recommendation

- Long-Term Simulation
- Seasonal
- 3 Hydrologic Conditions
- No Relation to System Storage
- Passes in all Zones
- No Relief Provisions

Frequency Plot of Monthly Bay Inflow - LCC-OCR Scenarios

Scenario Results

• Yield vs. Avg. Annual Bay Inflow

Run #	Run Description	SY (75K Min)	Avg AQBAY
1	Base_SY	204,449	379,284
2	No_PT	235,001	350,800
3	Seasonal_order	169,691	410,454
4	Spring_target	170,889	415,491
5	Summer_Tar	180,960	405,900
6	Winter_Tar	213,264	372,547
7	3K_All_months	230,089	358,019
8	Reduced may June	220,110	364,423

